
CSE 251B Project Final Report
https://github.com/mizoreto/Autonoumous_Driving_Motion_Forecast

Jakob Getzel
Department of Computer Science

University of California, San Diego
La Jolla, CA 92093
jgetzel@ucsd.edu

Jiayin Meng
Department of Computer Science

University of California, San Diego
La Jolla, CA 92093
j3meng@ucsd.edu

Amaar Valliani
Department of Computer Science

University of California, San Diego
La Jolla, CA 92093

avallian@ucsd.edu

Yule Zhang
Department of Computer Science

University of California, San Diego
La Jolla, CA 92093
yuz300@ucsd.edu

Abstract

Autonomous diving has become a defining field in Computer Science in the twenty-
first century. Turning towards Machine Learning models to solve the problem is a
natural evolution of the task. Accurate trajectory prediction is a fundamental part
of solving the problem and we attempt to leverage the ADAPT model to tackle the
challenge. Our final submission achieved a score of 7.25389, placing us 7th on the
private Kaggle leaderboard.

1 Introduction

Trajectory prediction is an important problem in autonomous driving, where the task is to predict
the future positions of agents such as vehicles, pedestrians, and cyclists based on their past motion.
Correct trajectory forecasting helps autonomous vehicles to foresee the behavior of surrounding
agents and make safer navigation decisions. In real life, successful solutions have broad applications
in fields like robotics, crowd simulation, and intelligent transportation systems.

For this project, we worked in the Trajectory Prediction Challenge using the Argoverse 2 Motion
Forecasting Dataset in Kaggle competition. The starter code provided a baseline framework with
three simple models: a linear regression model over flattened trajectory history, a feedforward MLP,
and an LSTM operating only on the ego agent’s past trajectory. These models apprehend either
simple correlations or short-term temporal dependencies but have significant limitations. They fail
to capture complex social dynamics, and struggle with making accurate long-horizon projections in
complex and dynamic environments.

To overcome these limitations, we explored a range of advanced deep-learning architecture models.
Our final work is inspired by the ADAPT model [1] which combines endpoint-conditioned trajectory
prediction with attention-based fusion. Our model introduces an LSTM-based encoder for each
agent, followed by a multi-head self-attention module to capture social interactions. To guide long-
horizon prediction, we employ a coarse-to-fine endpoint prediction module with gradient detachment,
enabling the decoder to generate future trajectories conditioned on a stable goal. This structure
provides interpretability and results in improved accuracy and better handling of complex situations.

Our main contributions are as follows:

Preprint. Under review.

https://github.com/mizoreto/Autonoumous_Driving_Motion_Forecast


• Multi-agent encoder-decoder architecture with attention-based interaction modeling:
We move beyond single-agent sequential models by encoding all agents’ trajectories and
capturing their interactions via a multi-head attention mechanism, allowing the model to
reason about social context.

• Coarse-to-fine endpoint-conditioned decoding:
We incorporate an endpoint predictor that generates a coarse goal followed by a refined
offset. The predicted endpoint is then used to guide final trajectory generation, improving
prediction stability and accuracy.

• Demonstrated strong improvements over baselines:
Our model consistently achieves lower validation MSE and FDE compared to the linear
regression, MLP, and LSTM models provided in the started code, validating the effectiveness
of our architectural innovations.

Our final submission achieved a score of 7.25389, placing us 7th on the private Kaggle leaderboard
in our final model.

2 Related Work

2.1 ADAPT: Efficient Multi-Agent Trajectory Prediction with Adaption

Recent works have focused on improving multi-agent trajectory forecasting by either increasing
model complexity or sacrificing computational efficiency. Aydemir et al.[1] proposed a novel solution
that achieves both high prediction accuracy and low inference cost through two key techniques:
dynamic weight learning and endpoint-conditioned prediction with gradient stopping. The former
enables the model to adaptively adjust the prediction head to each agent’s individual reference frame
within a scene-centric representation, effectively balancing the trade-off between pose-invariance
and computational efficiency. The latter stabilizes training and enhances performance by decoupling
the optimization of endpoint prediction and full trajectory generation. With these designs, ADAPT
demonstrates strong performance using significantly fewer parameters and faster inference times
compared to prior methods on benchmarks such as Argoverse and Interaction datasets. Moreover, its
unified architecture supports both single-agent and multi-agent prediction under the same backbone.

Our final model is largely inspired by ADAPT. Specifically, we follow a staged prediction process
comprising coarse endpoint prediction, endpoint refinement, and final trajectory generation, where
the trajectory is conditioned on both the initial position and the refined endpoint. To stabilize training,
we apply gradient stopping between the endpoint and trajectory prediction stages. Since our task
focuses on single-agent trajectory prediction, we omit the dynamic weight learning component used
in ADAPT. Furthermore, while ADAPT predicts multiple diverse endpoints, our model predicts only
a single endpoint.

2.2 AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting

Yuan et al.[2] introduced a transformer-based framework that jointly models both temporal dynamics
and social interactions of multiple agents by attending to all agents across all time steps. Unlike
prior works that treat the two dimensions separately, AgentFormer enables a richer representation of
multi-agent behavior by maintaining agent identity throughout the sequence.

While our architecture does not adopt AgentFormer’s structure, we referred to its attention mechanism
as inspiration when experimenting with an LSTM encoder–Transformer decoder architecture in early-
stage model development.

2.3 State Space Models: Efficiently Modeling Long Sequences with Structured State Spaces

Albert Gu et al. [3] proposed the Structured State Space sequence model (S4) to efficiently model
long sequences. This model is based on the state space model (SSM), which maps an input signal to
an output through a latent state. The S4 model can be represented as a continuous-time model, a
recurrent model, or a convolutional model.

2



The S4 model has demonstrated strong performance on a variety of benchmarks, including tasks with
sequences of up to 16,000 steps, and has shown to be competitive with, and in some cases superior
to, traditional models like RNNs and Transformers on tasks such as speech classification and image
classification.

3 Problem Statement

3.1 Problem

In this project, we explore how to forecast the trajectory of a vehicle, the ego agent. As context, have
past position and velocity information of the ego agent, along with other agents like external vehicles,
pedestrians, or cyclists.

This problem aims at assessing how well models can understand road activities and use the under-
standing to predict agent movements. The strides made in the space of this problem are crucial to the
development of self-driving, traffic management, and safety features to avoid crashes.

3.2 Dataset

To work on our problem, we are using the Argoverse 2 dataset. The training dataset is

Xtrain ∈ R10000×50×110×6

Where N = 10000 number of training scenes, A = 50 is the number of agents per scene (including
padded agents), T = 110 is the number of time steps per scene, and D = 6 is the features per
agent per time step. Looking at the features, we have 1: x-position, 2: y-position, 3: x-velocity, 4:
y-velocity, 5: heading angle, and 6: agent type (encoded as an int, one of 10 options). Looking at a
specific scene, agent, and time stamp, we have this vector xn,a,t ∈ [d1, d2, d3, d4, d5, d6]. The output
for the train data is

Ŷ ∈ R10000×60×2

We have 10000 scenes and 60 timestamps at each scene, which are the next movements in the
coordinates (x, y) ∈ R2 for the ego vehicle.

The test dataset is Xtest ∈ R2100×50×50×6. This is mostly the same as the train input, but we have
only Nt = 2100 test scenes and only Tt = 50 time stamps per scene. The output for the test data is
Ŷ ∈ R10000×60×2.

3.3 Dataset Changes

Given our Argoverse 2 dataset, we decided to split the training dataset into the first 50 timestamps for
the X , which is our model input, and the last 60 timestamps for the Y , which is the ground truth of
the input. We then split our training dataset into a train/validation split of 90/10 so our validation set
has the size 1000. Thus, the inputs of the model for training are

Xtrain ∈ R9000×50×50×6

The inputs for validation are
Xvalidation ∈ R1000×50×50×6

and the output is
Ŷ ∈ R10000×60×2

3.4 Data Preprocessing

We perform a series of preprocessing steps to normalize and augment the raw trajectory data before
feeding it into our model. Each scene contains motion histories for 50 agents over 110 time steps,
where the first 50 steps represent the past, and the remaining 60 steps are the future ground truth.

Formally, let the raw input tensor be S ∈ RM×50×110×6, where M is the number of scenes, and each
agent is described by a 6-dimensional feature vector containing (x, y) position, (vx, vy) velocity,
heading angle, and object type.

For each sample, we extract:

3



• The historical trajectory x ∈ R50×50×6 for all agents.
• The ground-truth future trajectory y ∈ R60×2 for the ego agent (index 0).

To improve generalization, we apply random data augmentations during training:

• With 50% probability, we apply a random in-plane rotation R ∈ R2×2 to all positional and
velocity components.

• With 50% probability, we reflect trajectories across the y-axis by negating the x-coordinates.

To remove global positional variance and preserve relative motion, we subtract the final historical
position of the ego agent, x0,49,:2, from all agent trajectories:

xi,t,:2 ← xi,t,:2 − x0,49,:2 yt ← yt − x0,49,:2 (1)

Finally, to stabilize training, we normalize the first four features (position and velocity) by a scale
factor α (typically α = 7.0):

xi,t,:4 ←
xi,t,:4

α
, yt ←

yt

α
(2)

During evaluation, the same normalization is applied, but data augmentations are disabled.

3.5 Input Representation

Let X ∈ RB×N×T×C be the input tensor, where B is the batch size, N = 50 is the number of agents,
T = 50 is the number of historical time steps, and C = 6 is the feature dimension.

4 Method

Our model is inspired by ADAPT [1] referenced in Section 2.1, which proposes a coarse-to-fine
endpoint prediction framework followed by trajectory interpolation. Our model consists of four main
components: a Feature Encoder, an Agent-Agent Attention module, an Endpoint Predictor, and a
Trajectory Decoder.

Given a set of N = 50 agent motion histories, each represented by a sequence of T = 50 steps with
6-dimensional features, the encoder embeds each polyline into a fixed-size representation. These
encoded features are then fused via a multi-head attention mechanism that models interactions
between agents. We then feed the fused ego agent features into the endpoint predictor to first predict
a coarse endpoint and then refine it via offset regression. Finally, the trajectory decoder predicts the
full future trajectory conditioned on the fused ego agent features and the predicted refined endpoint.
Figure 1 illustrates the architecture of our model.

Figure 1: Our Model Architecture

4.1 Feature Encoder

To represent each agent’s motion history, we employ a bidirectional LSTM encoder over the polyline
trajectory of each agent. We reshape the input X to (B · N,T,C) and feed it into a bidirectional
LSTM:

H = FeatureEncoder(X) ∈ RB×N×d (3)

The final hidden states from the forward and backward directions are concatenated to obtain a
fixed-size embedding for each agent’s polyline. This representation captures temporal dynamics and
direction-aware behavior, making it suitable for downstream interaction modeling. Here, d denotes
the LSTM’s output dimension (i.e., the sum of forward and backward hidden sizes).

4



4.2 Agent-Agent Interaction

We model social interactions among all N agents using a multi-head self-attention module. Given the
embeddings H ∈ RB×N×d, we apply attention as follows:

H′ = H+ MultiHeadAttn(H,H,H) ∈ RB×N×d (4)

This self-attention mechanism enables each agent to attend to all others in the scene, allowing the
model to reason about joint behaviors such as merging, yielding, and collision avoidance. We include
a residual connection to stabilize training and preserve the original agent features. Unlike a full
Transformer block, we omit LayerNorm and position-wise feedforward layers for computational
simplicity, as we observed no empirical benefit in our setting.

Finally, we extract the ego agent’s context-aware representation from the updated feature tensor as:

hego = H′[:, 0, :] ∈ RB×d (5)

This vector serves as the foundation for downstream prediction modules.

4.3 Coarse-to-Fine Endpoint Prediction

To predict the endpoint of the ego agent’s future motion, we adopt the coarse-to-fine endpoint
prediction strategy, inspired by ADAPT [1]. Our goal is to first predict a rough estimate of the future
endpoint and then refine it to improve precision, while decoupling the gradients between the two
steps for better training stability.

We begin by applying a MLP, composed of a LayerNorm, a ReLU activation, and a linear projection
layer, to the ego embedding:

f = MLP(hego) (6)

This transformed feature f is used to produce a coarse endpoint prediction êcoarse ∈ RB×2 through a
linear projection:

êcoarse = W1f + b1 (7)

To improve upon this initial prediction, we generate a residual refinement offset ô ∈ RB×2 from the
original ego embedding using another lightweight MLP:

ô = W2 · ReLU(hego) + b2 (8)

The final refined endpoint is then obtained by adding the offset to the detached coarse prediction:

êrefined = detach(êcoarse) + ô (9)

We explicitly detach the coarse prediction from the computation graph to prevent gradients from
flowing into the coarse branch during refinement. This design choice allows the refinement module to
independently optimize the correction vector, avoiding undesired interference with coarse endpoint
learning, which leads to more stable training and better endpoint localization.

4.4 Trajectory Decoder

To generate the final future trajectory, we concatenate the refined endpoint prediction êrefined with the
ego feature vector hego. Before concatenation, we detach the refined endpoint to prevent gradients
from flowing back through it. This concatenated vector is then passed through an MLP to regress the
full trajectory:

Ŷ = MLP ([hego, detach(êrefined)]) ∈ RB×60×2 (10)

The MLP consists of a ReLU activation followed by a linear layer that outputs a flat vector of size
60× 2, which is reshaped into a sequence of 2D positions over 60 future timesteps. The output Ŷ
represents the predicted trajectory of the ego agent in normalized coordinates.

5



4.5 Loss Function

The training objective combines two components: the full trajectory prediction loss and the endpoint
prediction loss. The endpoint loss supervises the predicted coarse endpoint, while the trajectory loss
encourages the predicted future sequence to match the ground-truth trajectory.

Let Y ∈ RB×60×2 denote the ground-truth future trajectory, and we have the predicted trajectory
Ŷ ∈ RB×60×2.

Let y60 = Y[:,−1, :] ∈ RB×2 be the final position of the ground-truth trajectory.

The overall loss is defined as:

L = MSE(Ŷ,Y) + λ · MSE(êcoarse,y60) (11)

where λ is a balancing weight (set to 1.0 in our experiments). Both terms use the mean squared error
(MSE) averaged across the batch.

5 Experiments

Here, we’ll describe different ways that we initially explored our problem, and ap-
proaches/architectures that were attempted. Ultimately, after exploring many different architectures,
our ADAPT based method achieved a lower loss and lower Mean-Squared Error than all of the other
approaches that we’ve tried.

5.1 Baselines

5.1.1 Baseline 1: Constant Velocity

We tried to run the constant velocity baseline algorithm to see how it works. Basically, it calculates the
average velocity of the prediction agent during the first 50 time steps and it assumes that the prediction
agent would move at a constant velocity for the next 60 time steps. The velocity is the distance the
agent would move in both x and y directions in one time step and we calculate where the agent
is for the next 60 time steps based on that average velocity and the position of the agent at time step 50.

(x, y)t = (x, y)50 + (t− 50) · average velocity, where t is the time step

We use MSE to calculate the training loss and it’s around 54.1862. After submitting the predictions
for test data to the leaderboard, the test error is around 53.02926.

5.1.2 Baseline 2: MLP

Afterwords, we tried a Multi-Layer Perceptron using ReLU activation functions and Dropout.

Our model starts with a layer that accepts 50 · 50 · 6 inputs (which is the size of our initial input data,
50 agents per scene, 50 starting time steps, with 6 features per agent), into 1024 neurons. We then
use ReLU after summing, and a dropout of 0.1.

We then have a second layer of 512 neurons with the same activation function and dropout after
each neuron. Then, a third layer with a size of 256 neurons (with ReLU and Dropout), which
lastly goes to our output layer of size 60∗2 (60 timestamps of an x and y coordinate for our ego agent).

5.1.3 Baseline 3: LSTM

We then use the default LSTM implementation initially provided to us, before moving onto other
various experiments such as using encoder-decoder, state-space models, transformers, and other
modifications of the basic LSTM architecture.

6



5.2 Evaluation

For all models, we evaluated our loss using Kaggle submission scores, as well as locally comparing
the Validation Mean-Absolute-Error (L1) loss, and Validation Mean-Squared-Error loss of our
different models.

For the pure training/validation loss of most of our baselines, we used MSE loss or WeightedMSE-
MAELoss with an alpha of 0.4. We used a different loss function when training our final model
(ADAPT) which did not allow for easy comparison on these fronts.

For ADAPT, we trained using ADAPT Loss, which is the MSE loss of the predicted endpoint of
the trajectory compared with the ground truth endpoint of the trajectory, added to the MSE of the
predicted and ground truth trajectories themselves.

For a more intuitive method of evaluation, we also visualized the predicted trajectories compared to
the ground truth trajectories in matplotlib to tell if we were on the right track.

5.3 Implementation Details

For training and testing our ADAPT model, we used Google Colab with an A100 GPU, containing
40GB of VRAM, and 83.5GB of system RAM. On this machine, with our model it takes around 10s
in order to train a single epoch.

To train our final ADAPT model, we used Adam with a learning rate of 0.001 with a "ReduceLROn-
Plateau" scheduler. The scheduler has a patience of 10 epochs without improvement with a threshold
of 0.001 before reducing the learning rate by a factor of 0.5. The scheduler has a learning rate floor
of 0.0000001 where it no longer decreases. Our optimizer also used a weight decay value of 0.00005.

We added early stopping with a patience of 40, and as a result ended up training for 153 epochs (at 10
seconds per epoch).Our batch size was 32, and we tried a range of hyper parameter values. Mainly,
we toyed with increasing the patience on our learning rate scheduler until it we stopped seeing
additional value from it (patience of 1 thorugh 10), the factor by which to decrease the learning rate
(0.9 to 0.1) and the starting learning rate (from 1e-1 to 1e-5). We also experimented with weight
decays between 1e-4 and 1e-5.

The tuning for the given above was for our ADAPT model, but tuning hyperparameters was different
for baselines. For example, when we thought we were potentially overfitting (high validation loss
with lower training loss) on a MLP model, we increased weight decay significantly more than we had
to for our ADAPT model. Another example is that our transformer decoder model ended up seeing
its best performance with a learning rate of 1e-4, a 10x difference compared to our ADAPT learning
rate. Our patience was increased for our ADAPT method compared to baselines as well (baselines
had a patience of 1), simply because we witnessed better success using this model.

5.4 Results

5.4.1 Quantitative Results

After training our model for 153 epochs and we ended with a training loss of 0.4264, a validation
loss of 0.7924, a validation MAE of 1.2681, and a validation MSE of 7.1673. Figure 2 shows how
the training and validation loss (using the ADAPT loss) decreased over the epochs.

After predicting the test data on our trained model, our model got a score of 7.22861 on the public
test set and a 7.25389 on the private test set. This led to a leaderboard ranking of 6th and 7th place
for our group in the competition.

7



Figure 2: Training and Validation Loss per Epoch

5.4.2 Qualitative Results

We also visualized the predictions of our model and looked at case studies of where the model
performed well or incorrectly. Looking at Figure 3, we can see cases where the model performed
correctly. We see that the model correctly follows trajectories that move in a straight line, regardless
of orientation. It also correctly recognizes wide turns and moves in the general direction to mimic the
curvature of the turn.

Figure 3: Case Studies where Model is Successful

Figure 4, we can see cases where the model performed poorly. We can see that the model predicts
imprecise and high-variance trajectories in scenes where the vehicle does not move and it often does
not come to a stop, in scenes where the ego vehicle comes to a stop in the scene. When looking at
turns, it does not accurately follow sharp turns and often under-turns compared to the ground truth.

These case studies help us understand how our model performs in the context of the problem and
understand its trajectory forecasting shortcomings in a real-world scenario.

8



Figure 4: Case Studies where Model needs Improvement

5.5 Ablations

One of our models that we were experimenting with was an LSTM Decoder with a Transformer
decoder. We had plenty of twists on this architecture, but for this section we will focus on testing the
impact of adding a temporal attention mechanism to a version of this architecture which already
contained social attention pooling. We compared this baseline social-attention model against our
experimental one, keeping all hyperparameters and training configurations identical to ensure a fair
evaluation. The baseline architecture used an LSTM to encode each agent’s trajectory, followed by a
social attention module to model interactions. The experimental architecture inserted a multi-head
temporal attention layer after the LSTM to dynamically weigh the importance of past timesteps for
each agent before the social attention stage.

Contrary to our expectations, the addition of the temporal attention module degraded performance.
The baseline model achieved a private Kaggle leaderboard score of 8.79274, while the experimental
model scored a higher (worse) 9.81890. This result suggests that the increased complexity of the
temporal attention layer led to overfitting or introduced noise from less relevant, distant past states.
The simpler heuristic of the baseline model, which focused on more recent history, proved to be a
more robust and effective strategy. This study demonstrates that increasing architectural complexity
does not always yield better performance, and simpler, more targeted mechanisms can be superior.

6 Conclusion

In this project, we learned the challenges of trajectory prediction and the design of deep learning
models for real-world forecasting tasks. Our experiments demonstrated that simple models, such as
linear regression and basic multilayer perceptrons (MLPs), are inadequate for capturing the temporal
and social dynamics in multi-agent traffic environments. The most effective techniques we found were
those that modeled the interactions between agents. Integrating attention mechanisms(multi-head
self-attention) significantly improved the model’s capacity to foresee socially plausible trajectories.
In addition, the ADAPT-inspired approach, which predicts a coarse endpoint before refining the full
trajectory, proved highly effective. It improved helped stabilize training by decoupling endpoint
prediction from full trajectory generation. One surprising finding was that adding useful features,
such as acceleration, did not necessarily improve performance. These additional features introduced
noise and made the model less stable in training. We also observed that data augmentation strategies,
such as random rotations and flips, helped to improve generalization in unseen scenarios. For
beginners’ advice, we suggest starting with simple sequential models, such as LSTMs, to capture

9



temporal dependencies and then moving to more complex architectures that model agent interactions.
Additionally, attention mechanisms are highly beneficial, and integrating intermediate prediction
targets (like endpoints) can stabilize and improve long-horizon predictions.

6.1 Limitations

For our work’s limitations. First, we did not combine with external map information, such as lane
boundaries or traffic signals, which could potentially provide helpful information for trajectory
prediction. Then, our models still struggle with rare, complex scenarios, such as sudden stops or
aggressive maneuvers, at times. As a result, the project highlighted the importance of particular model
design, interaction modeling, and iterative experimentation in developing effective deep learning
models for autonomous trajectory prediction.

6.2 Future Work

Future work can explore several areas. We can incorporate high-definition map features, such as lane
boundaries and traffic signals, which could enhance contextual understanding and improve prediction
accuracy. Next, we can build more advanced models, for example, using graph-based interaction
networks or relation-aware attention, which may lead to better representations of agent-to-agent
dynamics. Another approach is optimizing models for real-time deployment on edge devices. Finally,
we can also enhance the model’s ability to handle rare, critical events, such as sudden stops or
aggressive maneuvers.

7 Contributions

Jakob Getzel: Designed and implemented the State-Space Model (S4) experiments with different
approaches/decoders. Worked on milestone, presentation, and report.

Jiayin Meng: Designed and implemented the final model architecture; Explored multiple modeling
approaches; Conducted training, evaluation, and hyperparameter tuning; Worked on milestone,
presentation, and report.

Amaar Valliani: Explored Mamba model approach; Worked on milestone, presentation, and report;
Defined the problem, explored output of models, and evaluated strengths and weaknesses.

Yule Zhang: Explored and experimented the Graph Neural Network model and different en-
coders/decoders. Worked on milestone, presentation, and report.

References
[1] Görkay Aydemir, Adil Kaan Akan, and Fatma Güney. Adapt: Efficient multi-agent trajectory

prediction with adaptation, 2023.

[2] Ye Yuan, Xinshuo Weng, Yanglan Ou, and Kris Kitani. Agentformer: Agent-aware transformers
for socio-temporal multi-agent forecasting, 2021.

[3] Karan Goel Albert Gu and Christopher R´e. Efficiently modeling long sequences with structured
state spaces, 2021.

10


	Introduction
	Related Work
	ADAPT: Efficient Multi-Agent Trajectory Prediction with Adaption
	AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting
	State Space Models: Efficiently Modeling Long Sequences with Structured State Spaces

	Problem Statement
	Problem
	Dataset
	Dataset Changes
	Data Preprocessing
	Input Representation

	Method
	Feature Encoder
	Agent-Agent Interaction
	Coarse-to-Fine Endpoint Prediction
	Trajectory Decoder
	Loss Function

	Experiments
	Baselines
	Baseline 1: Constant Velocity
	Baseline 2: MLP
	Baseline 3: LSTM

	Evaluation
	Implementation Details
	Results
	Quantitative Results
	Qualitative Results

	Ablations

	Conclusion
	Limitations
	Future Work

	Contributions

