
Keep your ARMS and LEGS: Assuaging VRAM and Training Speed constraints
in Language Embedded 3D Gaussian Splats

Benjamin Xia Stone Yang Jiayin Meng Inan Xu

UC San Diego

Abstract

3D Gaussian Splatting (3DGS) provides real-time pho-
torealistic representations of captured scenes, widely re-
appropriated as the backbone representation for geomet-
ric and semantic processing. Of the many methods out
there, Foundational Model Embedded Gaussian Splatting
(FMGS) incorporates 3DGS with vision-language embed-
dings from CLIP and DINO models for open vocabulary
scene understanding. We propose a modified architecture
for FMGS where the CLIP and DINO models take the ren-
dered scene as input, rather than the multi-resolution hash
encoding. This reduces the memory footprint and train-
ing time on a variety of scenes while maintaining accuracy
and performance. Our modifications are publicly avail-
able as a fork of FMGS: github.com/stonecodecs/
foundation-model-embedded-3dgs.

1. Introduction

Recent advancements in foundation models has motivated
better 3D scene understanding. Traditional 3D scene un-
derstanding was constrained to closed vocabulary sets [3]
or focused solely on either segmentation or object detec-
tion. These constraints are challenges for integration with
real-world environments. Foundation models are trained on
large datasets with impressive capability in few-shot learn-
ing, enabling better generalization. Flamingo, proposed by
Alayrac et al. [1], demonstrates impressive performance
on open-vocabulary understanding for images. Inspired by
this, Zuo et al. [10] introduced Foundation Model Embed-
ded Gaussian Splatting (FMGS), achieving strong perfor-
mance on open-vocabulary object detection for 3D scenes.

However, one limitation of these foundation models
in 3D is their enormous memory footprint. For instance,
FMGS requires up to 24GB of GPU VRAM for training
which exceeds the maximum capability of most GPUs. This
is due to the need to compute and store high-dimensional
feature predictions from CLIP and DINO for each Gaussian

during training from the multi-resolution hash encoding
(MHE) representations, which results in a large memory
footprint. To make these foundation models more accessi-
ble and easier to train, we aim to reduce memory cost of
such models during training while preserving performance.

Our key contributions can be summarized as follows:
• We modified the original FMGS architecture to instead

directly render the multi-resolution encodings (MHE)
rather than pass the MHE as inputs to CLIP and DINO.

• We utilized parameter-efficient CNNs to produce the fea-
ture maps and compare them against CLIP and DINO dur-
ing training.

2. Related Work

We briefly review the components involved in FMGS:
3D scene representation, scene understanding, and vision-
language models.

2.1. 3D Scene Representation
There are several popular methods for representing 3D
scenes. One method is to use neural radiance field repre-
sentations (NeRFs) [6], which leverage neural networks to
map each point’s spatial location and viewing direction to
a volume density and radiance value. However, one limi-
tations of NeRFs is their slow training and inference times
due to the high number of samples per ray during raymarch-
ing. Instant-NGP proposed a multi-resolution hash encod-
ing (MHE) structure to accelerate training of NeRFs. This
MHE simultaneously treats coarse regions of the image as
a 1:1 mapping of values and dense regions as a hash table
for constant lookup time, done in such a way that is easily
parallelizable on GPUs.

3D Gaussian Splatting (3DGS) proposed representing
points in the scene as gaussians, then optimizing each gaus-
sian’s parameters using differentiable rasterization. They
achieved significantly faster rendering time compared to
NeRFs while maintaining quality. However, downstream
tasks utilizing 3DGS may encounter memory limitations

https://www.github.com/stonecodecs/foundation-model-embedded-3dgs
https://www.github.com/stonecodecs/foundation-model-embedded-3dgs

given that feature vectors are typically built per point in the
scene, and the set of points grows large in size for complex
scenes.

2.2. 3D Scene Understanding
Scene understanding aims to extend image or 3D represen-
tations with contextual information. One area of scene un-
derstanding is object detection, often either described as
closed or open vocabulary object detection. Traditional
methods for closed vocabulary object detection operate on
2D images. R-CNN [4] trains a deep convolutional neural
network to extract features and classify extracted regions in
the image. More recent methods have leverage transform-
ers. Minderer et al. [7] proposed OWL-ViT, a simple open
vocabulary object detection model using vision transform-
ers. This significantly improved adaptability to real-world
environments.

Open vocabulary scene understanding is strongly desired
for its better performance in practical applications. Caron
et al. [2] proposed a self-supervised distillation method
using transformers without labels, showcasing that vision
transformers can understand scenes. Transformers are bet-
ter suited for open vocabulary tasks than deep convolutional
networks because they generalize from large datasets while
also performing well on finetuned target datasets. In object
detection, Contrastive Language-Image Pretraining (CLIP)
[8] simultaneously trains an image encoder and text encoder
and predicts correct pairings for effective open vocabulary
object detection in 2D images. Building on this, PointCLIP
[9] generalized to 3D scenes by aligning CLIP encodings in
a 3D point cloud with 3D category texts.

2.3. Foundation Models for Scene Understanding
Incorporating language into 3D scenes is strongly de-
sired for various downstream tasks. Combining contribu-
tions from NeRF and CLIP, Language Embedded Radiance
Fields (LERF) [5] renders CLIP encodings alongside train-
ing rays in NeRFs to produce dense relevancy maps on text
queries. This is particularly useful for scene understand-
ing as it produces a relevancy map for each point in the 3D
scene.

Similar to LERF, Zuo et al. [10] introduced Founda-
tion Model Embedded Gaussian Splatting (FMGS), which
achieves strong performance in open-vocabulary object de-
tection by applying the contributions from CLIP and DINO
into 3D reconstructions via gaussian splatting. FMGS lever-
ages CLIP to capture global, multi-scale image semantics
through self-supervised distillation, and employs DINO to
enforce pixel-level alignment of CLIP features. Further-
more, instead of attaching feature vectors to every Gaus-
sian, which is both computationally and memory intensive,
FMGS adopts multi-resolution hash encoding (MHE) to
represent the scene’s language content, providing a more

lightweight and efficient alternative.

3. Method

Our model is based on the existing FMGS work (Zuo et
al.[10]) referenced in Section 2.3. As such, we borrow the
same general pipeline. First, the model takes in a set of
input RGB images I ∈ R3×H×W . Then, it estimates the
image poses πi,∀i ∈ I as well as the sparse pointcloud P
of the 3D scene using COLMAP’s Structure from Motion
algorithm. This pointcloud is then used as an initialization
for 3DGS.

After 3DGS training is complete, the model trains the
multi-resolution hash encodings (MHEs) by grounding 2D
CLIP embeddings into our 3D scene representation. As
noted in the original FMGS paper, CLIP embeddings are
global and are unsuited for pixel-aligned feature extraction;
therefore, DINO feature maps, having high quality segmen-
tation results, are used as regularizers to improve semantic
locality.

Our key contribution is a modification to the origi-
nal FMGS architecture. Instead of processing the multi-
resolution encodings (MHE) as inputs to DINO and CLIP
MLPs to produce our feature map renderings, we instead
directly render the MHE to produce feature maps sent into
parameter-efficient CNNs to output the final feature maps
in which we compare against CLIP and DINO feature maps
for supervision. Our adjusted architecture can be seen in
Figure 1 (using the original FMGS architecture diagram
from [10]).

3.1. MHE Feature Field

Here, we briefly go into specifics for the MHE, similar to
the original FMGS paper. For every Gaussian mean (cen-
ter) x of our 3DGS, we query the MHE grid to get a feature
vector q = MHE(x) ∈ R192. We then query all spatial
dimensions in the given viewpoint to render a MHE feature
field Q ∈ R192×H×W , where H is the height, and W is
the width. We then feed this feature field Q into our CLIP
and DINO CNNs to produce our final 512-dim CLIP feature
map F̂CLIP = CNNCLIP (Q) and 384-dim DINO feature
map F̂DINO = CNNDINO(Q). These predicted 2D fea-
ture maps are analogous to the rasterized MLP outputs in
the original FMGS paper.

3.2. CLIP & DINO embeddings

From our feature field, we now have F̂CLIP and F̂DINO.
To supervise these predicted feature maps, we generate
ground truth feature maps FCLIP and FDINO from our
two foundational models. We also ensure that the predicted
feature map is spatially consistent with the target pixels and
maintains feature-level similarity along object boundaries.

Figure 1. Our method’s adjusted FMGS architecture.

Hybrid CLIP Feature Map
To effectively capture language features at multiple scales
within the same image, we use the pre-trained CLIP model
to construct a multi-scale pyramid of CLIP feature maps.
We then upsample all lower-resolution feature maps to
match the resolution of the largest one, and compute their
average to generate the hybrid feature map FCLIP . We de-
fine the CLIP loss in the same way as FMGS, using the
Huber loss to measure the difference between the predicted
feature map and the target CLIP feature map:

LCLIP =

{
0.5 · |F̂CLIP − F|2, if |F̂− F| < δ

δ ·
(
|F̂− F| − 0.5 · δ

)
, otherwise

(1)
where δ is a hyperparameter.

DINO Feature Map
We feed the original input image into the pre-trained DINO
model to generate the target DINO feature map FDINO for
regularization to improve the semantic locality. The DINO
feature map loss is defined as follows:

LDINO = |F̂DINO − FDINO|2 (2)

This regularization encourages the predicted features to
be more fine-grained to capture semantically meaningful
boundaries.

Pixel-alignment between Predicted Feature Fields
Like the original FMGS paper, to enforce local consistency
between the predicted CLIP and DINO feature maps, we
define the pixel-alignment loss using dot product similarity.
Specifically, for each pixel, we compute the difference in
dot products between the center and its surrounding neigh-
bors (within a K×K window) across normalized CLIP and
DINO embeddings. The loss is defined as:

Lpixel =
1

K2 − 1

∑
i∈P

∑
j∈N (i)
j ̸=i

∣∣∣F̂⊤
D,iF̂D,j − F̂⊤

C,iF̂C,j

∣∣∣
We use gradient stopping on the predicted DINO fea-

tures, ensuring the DINO CNN remains unaffected by this
loss. This loss encourages the CLIP feature map to follow
the local similarity structure of the DINO features.

Training Loss
Our final loss function is:

Ltotal = λLCLIP + (1− λ)LDINO + γLpixel (3)

which follows the same formulation as proposed in FMGS.

3.3. Query Pipeline
Given a query view and an open-vocabulary query, our goal
is to localize the query within the view. To achieve this, we
generate a relevancy map that highlights the semantically
relevant regions. Specifically, we first render the MHE fea-
tures and pass these features through our trained CLIP CNN
to obtain the predicted CLIP feature map. We also compute
the CLIP embedding for the query prompt. The relevancy
map is then computed by comparing the predicted CLIP fea-
tures with the query embedding. We follow the same soft-
max based scoring strategy as FMGS, which uses canonical
phrase embeddings for normalization.

The canonical phrase prompts, such as ”object”, ”stuff”,
”things”, and ”texture”, provide a semantic reference frame
that allows the model to judge how uniquely a pixel is
aligned with the query prompt and give higher relevancy
score when the predicted feature is closer to the query em-
bedding than the canonical phrase embeddings.

4. Experiments
We evaluated our model on open-vocabulary object detec-
tion using scenes from the LERF dataset for direct compar-

Figure 2. Runtime and VRAM usage comparison

ison with the results from FMGS. These five scenes are la-
beled ‘bouquet’, ‘figurines’, ‘ramen’, ‘teatime’, and ‘waldo
kitchen’. We show our model is competitive against FMGS,
while training 37.45% faster and reducing VRAM use by
24.08%, on average.

4.1. Open-Vocabulary Object Detection

We evaluate our model’s performance on object understand-
ing using the same five scenes of the LERF dataset defined
previously. Each scene has multiple (bounding box, label)
ground truth pairs for each object within them, and multiple
test views where the model is queried to “predict” the most
relevant pixels corresponding to the queried text prompt.
More precisely, we judge based on an ‘accuracy’ metric,
where accuracy is defined as the sum of correct queries over
the amount of total queries, analogous to an exam where
every question is worth one point. A query is “correct” if
the maximally valued pixel in the generated relevancy map
is inside the GT bounding box, and “incorrect” when out-
side of it. The results are shown in Table 1. (best and
second-best ; DNF is for Did Not Finish, due to GPU out-

of-memory errors.)
Note: We could not replicate the numbers they demon-

strated on their paper with their demo. For this, we compare
with the empirical results we perceived from the model.

Scene LERF [5] FMGS Ours

bouquet 83.3% 91.7% 100.0%
figurines 87.2% 79.5 % 79.5%
ramen 62.5% 80.0 % 82.5%
teatime 96.9% 87.5 % 90.6%
kitchen 85.2% DNF 72.2%

Average Acc. 83.0% 84.68% 84.96%

Table 1. Comparison of accuracy (%).

For more qualitative comparisons between FMGS and
our method, Figure 4 provides insights on the discrepancy
between relevancy maps generated by the two models. Red
regions correspond to higher relevancy, while those closer
to blue are lower. In these non-cherry-picked, randomly
sampled views & queries of our four successfully rendered
scenes, we notice subtle differences. One pattern is that
our method usually results in slightly lower energy in high-

Figure 3. FMGS (left) and our method (right) for querying ‘rubics
cube’ in the ‘figurines’ scene. Some of the background is erro-
neously considered relevant by FMGS, but is correctly omitted by
our method. Note that the total relevancy energy of our method is
lower (not as red).

relevancy regions, but is still easily distinguished over low
relevancy regions. This can be beneficial in some cases,
as it can lower false positive relevancies, as shown in an
example from Figure 3. Other discrepancies that we per-
ceived between the models were inconsistent variations of
“smoothness” of high to low transitioning relevancy regions
(demonstrated in ramen scene’s ‘green onion’, but oppo-
sitely so in figurines’ ‘chairs’), and within the negative re-
gions where one model may predict lower relevancy than
the other (‘opposites’ can be found in figurines’ ‘waldo’ and
both teatime queries).

4.2. Computational Results
Figure 2 shows our method’s computational improvements
over traditional FMGS on both training runtime and VRAM
usage. Table 2 and Table 3 below display these results nu-
merically. All results were performed on a single RTX 3090
GPU with 24GB VRAM.

NOTE: ‘waldo kitchen’ scene crashed due to an out-of-
memory error; therefore, incomplete results are indicated
with a Did Not Finish (DNF) indicator.

bouquet fig ramen tea waldo
FMGS 116 86.1 64 76 DNF
Ours 52 54 48 60 56

Table 2. Comparison of training time (min). Lower is better.

bouquet fig ramen tea waldo
FMGS 20.685 20.165 15.687 23.473 >24
Ours 15.583 16.079 12.275 16.519 16.993

Table 3. Comparison of VRAM usage (GB). Lower is better.

Something to note is that the ‘ramen’ scene inherently
takes less VRAM and training time than the other scenes,
having the lowest absolute difference of memory savings.
This may indicate that our method scales better for larger-
scale scenes with many Gaussians, which is a successful
result that digs into the key motivations for this report.

Downsampling Features
More experiments (omitted here) were performed regard-
ing downsampling the feature dimensions to further reduce
VRAM requirements. We modified the kernels of the DINO
and CLIP CNNs with additional layers for downsampling
the feature dimensions, and upsampling back for super-
vision. Specifically, in the DINO and CLIP CNNs, two
convolutional layers with kernel size 256× 256× 3 were
added for downsampling and two ConvTranspose2D layers
of the same size were added for upsampling. However, the
results degraded the model’s performance so significantly
(< 50% accuracy) that the computation-performance trade-
off would not be worthwhile.

5. Conclusion
We presented a modified architecture of Zuo et al.’s [10]
Foundation Model Embedded Gaussian Splatting (FMGS).
We replaced the original FMGS architecture that uses CLIP
and DINO MLPs to decode the MHE into feature maps to
instead directly render the MHE features into a feature field
and apply CNNs to transform into CLIP and DINO fea-
ture maps for supervision. Our approach significantly re-
duces both training time and VRAM usage while maintain-
ing competitive or improved accuracy compared to the orig-
inal FMGS architecture. We evaluated our changes quanti-
tatively and qualitatively on several scenes from the LERF
dataset, experimenting with other memory optimizations as
well. Our work provides a practical way toward scaling
foundation model supervision to larger scenes and more
resource-constrained environments.

References
[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, An-

toine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur
Mensch, Katie Millican, Malcolm Reynolds, Roman Ring,
Eliza Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong,
Sina Samangooei, Marianne Monteiro, Jacob Menick, Se-
bastian Borgeaud, Andrew Brock, Aida Nematzadeh, Sa-
hand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira,
Oriol Vinyals, Andrew Zisserman, and Karen Simonyan.
Flamingo: a visual language model for few-shot learning,
2022.

[2] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers, 2021.

[3] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes, 2017.

[4] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation, 2014.

[5] Justin* Kerr, Chung Min* Kim, Ken Goldberg, Angjoo
Kanazawa, and Matthew Tancik. Lerf: Language embedded

Figure 4. Relevancy maps generated by the original FMGS (left) and our approach (right).

radiance fields. In International Conference on Computer
Vision (ICCV), 2023.

[6] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis, 2020.

[7] Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim
Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh
Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran
Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil
Houlsby. Simple open-vocabulary object detection with vi-
sion transformers, 2022.

[8] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision, 2021.

[9] Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xu-
peng Miao, Bin Cui, Yu Qiao, Peng Gao, and Hongsheng
Li. Pointclip: Point cloud understanding by clip, 2021.

[10] Xingxing Zuo, Pouya Samangouei, Yunwen Zhou, Yan Di,
and Mingyang Li. Fmgs: Foundation model embedded 3d
gaussian splatting for holistic 3d scene understanding. arXiv
preprint arXiv:2401.01970, 2024.

